
A2410 High Resolution Color Graphics Card

Hardware / Software Overview

Richard Miner Alex Niedzwiecki

Center for Productivity Enhancement

University of Lowell

Abstract

A high resolution color graphics card, the A2410 has been developed for the Com-

modore Amiga computer. This graphics card is based on a Texas Instruments graphics

systems processor, the TMS34010. The card couples the graphics system processor

with frame bu�er and program/data memory, a palette chip and DMA circuit for high

speed data transfer between the graphics card and the Amiga.

Introduction

The A2410 high resolution graphics card is a separate graphics device that sits in one of the

standard Amiga 100-pin expansion slots. The graphics card couples the TI Graphics System

Processor (GSP) with its own local program memory, video memory, palette chip and DMA

circuit. Presented here is an overview of the main functional components of the graphics

card and a description of a low level application programmers interface for accessing these

capabilities.

-

?

-

B

G

-

-

R

?

-

TI

34010

GSP

Circuit

DMA

BT458

Dynamic RAM Video RAM

6

6

?

�

Palette

Figure 1: Block Diagram of the A2410 High Resolution Color Graphics Card

High Resolution Graphics Card 1



The Amiga as Host

The Amiga 2000 serves as the host for the High Resolution Graphics Card (A2410) and

is used to manipulate and program the on-board TMS34010 registers, down-load new code

and data into the frame bu�er or into the GSP's local memory, and send messages between

applications running on the host and the graphics manager running on the board.

The A2410 Graphics Card plugs into any of the Amiga Zorro II 100-pin expansion slots.

As the Amiga is booting, it automatically assigns an address to the card via the standard

amiga auto-con�guration protocol.

High Resolution Color Graphics Card

This description of the hardware is provided to give an understanding of the graphics card

architecture. Most programmers will not need this information because the device level

software interface to the graphics card provides a higher level abstract interface to the A2410

functionality.

The six main functional blocks of the board are depicted in Figure 1 and include:

1. the Graphics System Processor (34010)

2. Video Memory (frame bu�er) for images

3. Dynamic Memory (for programs and local data)

4. the Brooktree Palette chip

5. Control Register

6. DMA circuit

The heart of the graphics system is a highly integrated CPU, the TMS34010 graphics

system processor (GSP), with an instruction set tailored for graphics applications. The GSP

is responsible for communicating with the host, executing graphics instructions, refreshing

memory, and refreshing the screen. The TMS34010 is a powerful CPU which combines the

features of a general-purpose processor and a graphics controller. The TMS34010 instruction

set includes a full complement of general purpose instructions, as well as graphics functions,

from which you can construct e�cient high-level functions. The instructions support arith-

metic and boolean operations, data moves, conditional jumps, subroutine calls and returns.

There is video memory for image display that supports 1024 by 1024 eight-bit pixels and

additional memory for two overlay bit-planes. In addition to this image frame bu�er memory

there is a dynamic memory block for storing program code and data.

High Resolution Graphics Card 2



� -

6

?

6

6

Host Address High

Host Data

GSP Memory Bus

�

Control

Timing

6

?

? ?

-

Processor

Graphics

DRAM

Refresh

Control

CRT

6

Control

Refresh

Screen

Host

Host Control

Host Address Low

?

Graphics

card

memory

To

Figure 2: Graphics System Processor

The Graphics System Processor

All communication between the board and the Amiga is done through the GSP registers.

The functional blocks of the GSP are show in Figure 2. The host interface consists of the

decode and auto-con�guration logic responsible for causing the graphics GSP to do one of

several functions (depending on the address issued to it). These addresses correspond to the

GSP's four host registers:

HSTADRL Host address low

HSTADRH Host address high

HSTDATA Host data

HSTCTL host control

The HSTADRL and HSTADRH registers can be loaded with the low and high 16-bit

words, respectively, of a 32-bit address pointer in GSP's local memory. They can be used

by the Amiga to access or load data and programs into the dynamic memory to be executed

by the GSP. In addition, the image to be displayed is moved from system memory into the

frame bu�er by loading these two registers with the address of a starting location within

video memory. The HSTDATA register will contain the 16-bit data to be read or written

to GSP's memory. HSTCTL is a control register containing bits for interrupt requests and

status codes between the host and GSP.

The address pointers should be loaded into the GSP's HSTADRL and HSTADRH reg-

isters before doing one or more accesses of local memory using the HSTDATA register. To

ensure pointing to a word boundary, the GSP rounds the four LSB's of HSTADRL to 0's.

Also, in order to access a block of data without the overhead of incrementing each time,

the GSP can be put in an auto-increment mode. This is done by setting appropriate bits in

the control register (INCR,INRW). By loading the address pointer, an update of HSTDATA

High Resolution Graphics Card 3



cursor and menu overlays

application images and text

A

A

A

A

A

AU

A

A

A

AU

image buffer

overlay bitplanes

"

"

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

AK

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(8 bits per pixel)

Figure 3: Video Memory Con�guration

is automatically triggered. Each subsequent host access of HSTDATA will cause HSTADL

and HSTADRH to be automatically incremented (if INCR or INRW are set) to point to the

next word location in memory. Note that there is no hardware stop to prevent the simulta-

neous access of the host registers by the GSP and Amiga. Software written must avoid this

situation to prevent invalid data in the registers.

Video Memory (Frame Bu�er)

In graphics systems today, there are several major methods of representing frame bu�er

data and latching it through the digital to analog converters that drive RGB monitors. One

method is known as bit-plane organization, and has separate planes of memory for each

bit of every pixel in the video memory. This method is used in the native amiga graphics

environment.

B

overlay 0

overlay 1

-

Image buffer

BT458

-

-

-

3

2

1

R

G

255

0

BG

R

�

�

�

�

�

�

�

�

�

�

�:

X

X

�

�

8

Figure 4: Color assignment through the BT458 palette chip

On the GSP board the chunky mode method is used. The pixel data is arranged con-

tiguously in memory as consecutive eight-bit values. Additionally, there are two bit-planes

of data that are used as overlay planes. The arrangement of the frame bu�er and overlay

planes can be seen in Figure 3.

High Resolution Graphics Card 4



Each eight-bit pixel in the image frame bu�er is used as a pointer into a 256-element

look-up table. In the look-up table the pixel value is assigned a 24-bit RGB color value. A

Brooktree palette chip (BT458) provides this look-up table on the A2410. The BT458 also

supports a separate look-up table that is used by the overlay bitplanes. The arrangement is

show in Figure 4.

Control Register

The A2410 Graphics Card has a number of software features that utilize a special pro-

grammable register to allow the software to con�gure the system to match its current needs.

The �rst of these allow the software to enable the DMA circuitry (which defaults to an idle

state following a hardware reset). Once this circuitry is enabled, the hardware will auto-

matically initiate the proper control signal protocol to transfer data between the A2410 and

the Amiga. The circuit can transfer multiple words per bus access. The second mode bit

enables the board to perform a byte-swap operation on all data that is being transferred

to or from the High Resolution Graphics Card. This allows high speed data transfer to

continue without the need to realign the most and least signi�cant bytes while moving data

between the host processor and graphics processor. The next function takes advantage of the

Flash Write Enable signal (FWE) available in many commercial Video RAMs (VRAMS).

By allowing the utilization of this feature, the screen can be cleared in a small fraction of

the time that would be required by the conventional method of sequentially writing to the

frame bu�er memory. The remaining functionality of the programmable register concerns

the actual display functionality of the A2410 High Resolution Graphics Card. The A2410

has two video clocks to accommodate a wide variety of resolutions. One clock is used for high

resolutions and a mode bit in the control register can activate an alternate clock to handle

NTSC or PAL interlaced video scan rates. Finally, the register is responsible for allowing

the user to set the mode of sync signal necessary for board compatability with whatever

monitor/cable combination is desired. This would permit the software control of selecting

the type of sync required; Composite or seperate Horizontal/Vertical, as well as the output

line format; Sync on Green or seperate lines.

Texas Instruments Graphics Architecture

The Texas Instruments Graphics Architecture TIGA is a software interface between an ap-

plication program running on a host computer and a graphics board based on the TMS340x0

family of graphics processors. An implementation of TIGA as an Amiga device acts as the

low level programming interface for the high resolution graphics card. In this version of

TIGA the host is an Amiga, and the graphics board is the high resolution graphics card,

but an application written using TIGA will be portable to any TIGA- compatible system.

Target applications include computer-aided design, desktop publishing, imaging, and pre-

sentation graphics, which naturally bene�t from the high speed, high resolution, portability,

High Resolution Graphics Card 5



TIGA

�

�

�

�

�

�

�

�

�=

�

�

�

�

�

�

�

�

�

�>

6

?

@

@

@

@

@

@

@

@

@

@I@

@

@

@

@

@

@

@

@

@R

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

��

6

?

Application

Command

Buffers

Message

Bits

'

&

$

%

'

&

$

%

Manager

Graphics

HRGC

Host

TIGA

'

&

$

%

Communication

Driver

Figure 5: TIGA Architecture

High Resolution Graphics Card 6



and 
exibility provided by TIGA.

As shown in Figure 5, the two main components of TIGA are the communications driver

which runs on the Amiga, and the graphics manager which runs on the graphics processor.

The TIGA interface is a protocol which utilizes a circular queue on the graphics processor

to bu�er up commands as they are received from the host. The Amiga implementation of

TIGA is done as an Exec level device. Thus in most situations the application program

can resume processing as soon as the graphics command is sent, without waiting for the

command to be executed.

The communications driver handles the handshaking necessary to initiate communication

with the graphics processor, to send and receive commands and data between the GSP and

the host. Synchronization and bu�er allocation are performed jointly by the communica-

tions driver and by the graphics manager, and are therefore transparent to the application

program.

The graphics manager consists of the command processor which communicates directly

with the communications driver, a C-Packet handler, and a suite of graphics processor func-

tions. These functions can be partitioned either by calling mode, or by functionality.

The graphics processor functions are written in either TMS34010 assembly language, in

which case they are called via direct mode calls; or in C, in which case they are called via

C-packet calls. Each time a command is received from the host, the command processor

determines which type of call is appropriate. If the current command is of the direct mode

type, the corresponding function is called directly from the command processor. If the current

command is of the C-Packet type, the C-Packet handler is called to stack the arguments

according to C convention, and then the corresponding C function is called. This is all

handled by the graphics manager's command processor on the high resolution graphics card.

The graphics processor functions are functionally partitioned into Core Primitives and

Extended Primitives. The Core primitives consist of graphics system initialization functions

such as init-palet, graphics attribute control functions such as those to set pixel processing

operation and to enable or disable transparency, text functions, cursor functions, memory

management functions, and functions to send raw data between the host and the graphics

processor. The Extended primitives consist mainly of graphics output functions, such as

draw-line, draw-rect, seed-�ll, etc. So, if an application were designed to use the board

for image processing, for example, it would be possible to load in the core primitives and

substitute application-speci�c routines for the graphics output functions.

The following tables list the functions accessible via the Exec device interface to TIGA.

More information about programming the TIGA device is supplied with the documents and

examples that accompany the developer releases of the high resolution graphics card.

High Resolution Graphics Card 7



Function Description Type

Graphics System Initialization

cd is alive Return if TIGACD is running Core

function implemented Return if a function is implemented Core

get con�g Return board con�guration Core

get modeinfo Return board con�guration Core

get videomode Return current emulation mode Core

gsp execute Execute a COFF program Core

install primitives Install extended drawing primitives Core

install usererror Install user error Core

loadco� Load a COFF program Core

set con�g Set graphics con�g Core

set timeout Set timeout timing value Core

set videomode Set emulation mode Core

synchronize Make host wait for GSP to idle Core

Function Description Type

Clear Functions

clear frame bu�er Clear entire frame bu�er Core

clear page Clear current drawing page Core

clear screen Clear screen Core

Function Description Type

Graphics Attribute Control

cpw Compare point to window Core

get colors Returns fore- and background colors Core

get env Returns current environment structure Core

get pmask Returns color plane mask Core

get ppop Returns pixel processing operation Core

get transp Returns transparency mode Core

get windowing Inquire windowing mode Core

set bcolor Set background color Core

set clip rect Set clipping rectangle Core

set colors Set foreground and background colors Core

set draw origin Set drawing origin Ext

set fcolor Sets foreground color Core

set pattn addr Sets address of current pattern Ext

set pensize Sets current pensize Ext

set pmask Sets color plane mask Core

set ppop Sets pixel processing operation Core

set transp Set transparency mode Core

set windowing Sets windowing mode Core

transp o� Disables pixel transparency Core

transp on Enables pixel transparency Core

High Resolution Graphics Card 8



Function Description Type

Palette Functions

get nearest color Return nearest color in palette Core

get palet Return an entire palette Core

get palete entry Return a palette entry Core

init palet Default palette Core

set palet Set an entire palette Core

set palet entry Set a palette entry Core

Function Description Type

Cursor Functions

get curs state Return cursor current state Core

get curs xy Return cursor position Core

set curs shape Set cursor shape Core

set curs state Make cursor visible/invisible Core

set curs xy Set current cursor position Core

Function Description Type

Communication Functions

cop2gsp Copy coprocessor to GSP memory Core

�eld extract Extract data from GSP memory Core

�eld insert Insert data into GSP memory Core

gsp2cop Copy GSP memory to coprocessor Core

gsp2host Copy from GSP into host memory Core

gsp2hostxy Copy rectangular area from GSP to host Core

host2gsp Copy from host into GSP memory Core

host2gspxy Copy rectangular area from host to GSP Core

Function Description Type

Extensibility Functions

create aim Create absolute load module Core

create esym Create external symbol table �le Core


ush esym Flush external symbol table �le Core


ush extended Flush all user extensions Core

get isr priorities Return interrupt service routine priorities Core

install alm Install absolute load module Core

install primitives Install extended drawing primitives Core

install rim Install relocatable load module Core

set interrupt Set an interrupt handler Core

High Resolution Graphics Card 9



Function Description Type

Graphics Output

draw line Draw line Ext

draw oval Draw ellipse outline Ext

draw ovalarc Draw ellipse arc Ext

draw piearc Draw ellipse pie slice Ext

draw point Draw single pixel Ext

draw polyline Draw list of lines Ext

draw rect Draw rectangle outline Ext

�ll convex Draw solid convex polygon Ext

�ll oval Draw solid ellipse Ext

�ll piearc Draw solid ellipse pie slice Ext

�ll polygon Draw solid polygon Ext

�ll rect Draw solid rectangle Ext

frame oval Draw oval border Ext

frame rect Draw rectangular border Ext

patn�ll convex Draw patterned convex polygon Ext

patn�ll oval Draw patterned ellipse Ext

patn�ll piearc Draw patterned pie slice Ext

patn�ll polygon Draw patterned polygon Ext

patn�ll rect Draw patterned rectangular Ext

patnframe oval Draw patterned oval border Ext

patnframe rect Draw patterned rectangular border Ext

patnpen line Draw line with pattern and pen Ext

patnpen ovalarc Draw oval arc with pattern and pen Ext

patnpen piearc Draw pie slice with pattern and pen Ext

patnpen point Draw pixel with pattern and pen Ext

patnpen polyline Draw lines with pattern and pen Ext

pen line Draw line with pen Ext

pen ovalarc Draw an oval arc with pen Ext

pen piearc Draw pie slice with pen Ext

pen point Draw point with pen Ext

pen polyline Draw lines with pen Ext

seed �ll Fill region with color Ext

styled line Draw styled line Ext

High Resolution Graphics Card 10



Function Description Type

Poly Drawing Functions

draw polyline Draw polyline Ext

�ll convex Fill convex polygon Ext

�ll polygon Fill polygon Ext

patn�ll convex Pattern �ll convex Ext

patn�ll polygon Pattern �ll polygon Ext

patnpen polyline Pattern pen polyline Ext

pen polyline Pen polyline Ext

Function Description Type

Workspace Functions

�ll piearc Fill pie arc Ext

�ll polygon Fill polygon Ext

get wksp Return o�screen workspace Core

patn�ll piearc Pattern �ll pie arc Ext

patn�ll polygon Pattern �ll polygon Ext

set wksp Set a temporary workspace Core

Function Description Type

Pixel Array Functions

bitbit Bitbit source array to destination Ext

set dstbm Set destination bitmap Ext

set srcbm Set source bitmap Ext

swap bm Swap source and destination bitmaps Ext

zoom rect Zoom source rectangle Ext

Function Description Type

Text Functions

delete font Remove a font from the font table Ext

get fontinfo Return font physical information Core

get textattr Return text rendering attributes Ext

init text Initialize text drawing environment Core

install font Install font into font table Ext

select font Select an installed font for use Ext

set textattr Set text rendering attributes Ext

text out Render an ASCII string Core

text width Return the width of an ASCII string Ext

High Resolution Graphics Card 11



Function Description Type

Graphics Utility

get pixel Read contents of a pixel Ext

lmo Return left-most-one bit number Core

page busy Return status of page 
ipping Core

page 
ip Set display and drawing pages Core

peek breg Read from a B-�le register Core

poke-breg Write to a B-�le register Core

rmo Return right-most-one bit number Core

wait scan Wait for a designated scan-line Core

Function Description Type

Memory Management

get max freespace Return largest free block Core

get o�screen memory Return o�screen memory blocks Core

gsp2gsp Copy from GSP Memory to GSP Memory Core

gsp calloc Allocate and clear GSP memory Core

gsp free Deallocate GSP memory Core

gsp malloc Allocate GSP memory Core

gsp minit Reinitialize GSP memory heap pool Core

gsp realloc Resize allocated block of memory Core

References

[TI 88] Texas Instruments, TMS34010 User's Guide, Texas Instruments Incorporated,

Houston TX, 1988

[TI 89] Texas Instruments, TIGA-340 Interface User's Guide, Texas Instruments Incor-

porated, Houston TX, 1989

High Resolution Graphics Card 12


